316 Stainless Steel Pipe Suppliers

316 Stainless Steel Pipe Suppliers

316 Stainless Steel Pipe Suppliers

316 Stainless Steel Pipe Suppliers



Stainless steel differs from carbon steel due to the presence of chromium. Unprotected carbon steel rusts readily when exposed to the combination of air and moisture. The resulting iron oxide surface layer (the rust) is porous and fragile. Since iron oxide occupies a larger volume than the original steel this layer expands and tends to flake and fall away exposing the underlying steel to further attack. In comparison, stainless steels contain sufficient chromium to undergo passivation, spontaneously forming a microscopically thin inert surface film of chromium oxide by reaction with the oxygen in air and even the small amount of dissolved oxygen in water. This passive film prevents further corrosion by blocking oxygen diffusion to the steel surface and thus prevents corrosion from spreading into the bulk of the metal.[3] This film is self-repairing if it is scratched or temporarily disturbed by an upset condition in the environment that exceeds the inherent corrosion resistance of that grade[2][3]. Thus. stainless steels are used where both the strength of steel and corrosion resistance are required.





In metallurgystainless steel, also known as inox steel or inox from French inoxydable (inoxidizable), is a steel alloy with a minimum of 10.5%[1] chromium content by mass.

Stainless steels are notable for their corrosion resistance, which increases with increasing chromium content. Molybdenum additions increase corrosion resistance in reducing acids and against pitting attack in chloride solutions. Thus, there are numerous grades of stainless steel with varying chromium and molybdenum contents to suit the environment the alloy must endure.

Stainless steel’s resistance to corrosion and staining, low maintenance, and familiar lustre make it an ideal material for many applications. Stainless steels are rolled into sheets, plates, bars, wire, and tubing to be used in cookwarecutlerysurgical instrumentsmajor appliances and as construction material in large buildings, such as the Chrysler Building. As well as, industrial equipment (for example, in paper millschemical plantswater treatment), and storage tanks and tankers for chemicals and food products (for example, chemical tankers and road tankers). Stainless steels corrosion resistance, the ease with which it can be steam cleaned and sterilized and no need for other surface coatings has also influenced its use in commercial kitchens and food processing plants.



Chemical Formula

Fe, <0.03% C, 16-18.5% Cr, 10-14% Ni, 2-3% Mo, <2% Mn, <1% Si, <0.045% P, <0.03% S


Background

Grade 316 is the standard molybdenum-bearing grade, second in importance to 304 amongst the austenitic stainless steels. The molybdenum gives 316 better overall corrosion resistant properties than Grade 304, particularly higher resistance to pitting and crevice corrosion in chloride environments. It has excellent forming and welding characteristics. It is readily brake or roll formed into a variety of parts for applications in the industrial, architectural, and transportation fields. Grade 316 also has outstanding welding characteristics. Post-weld annealing is not required when welding thin sections

Grade 316L, the low carbon version of 316 and is immune from sensitisation (grain boundary carbide precipitation). Thus it is extensively used in heavy gauge welded components (over about 6mm). Grade 316H, with its higher carbon content has application at elevated temperatures, as does stabilised grade 316Ti.
The austenitic structure also gives these grades excellent toughness, even down to cryogenic temperatures.

Key Properties

These properties are specified for flat rolled product (plate, sheet and coil) in ASTM A240/A240M. Similar but not necessarily identical properties are specified for other products such as pipe and bar in their respective specifications.

Composition

Table 1. Composition ranges for 316 grade of stainless steels.
GradeCMnSiPSCrMoNiN
316Min---0-16.02.0010.0-
Max0.082.00.750.0450.0318.03.0014.00.10
316LMin-----16.02.0010.0-
Max0.032.00.750.0450.0318.03.0014.00.10
316HMin0.040.040--16.02.0010.0-
max0.100.100.750.0450.0318.03.0014.0-



Mechanical Properties

Table 2. Mechanical properties of 316 grade stainless steels.
GradeTensile Str (MPa) minYield Str 0.2% Proof (MPa) minElong (% in 50 mm) minHardness
Rockwell B (HR B) maxBrinell (HB) max
3165152054095217
316L4851704095217
316H5152054095217

Note: 316H also has a requirement for a grain size of ASTM no. 7 or coarser.



Physical Properties

Table 3. Typical physical properties for 316 grade stainless steels.
GradeDensity(kg/m3)Elastic Modulus (GPa)Mean Co-eff of Thermal Expansion (µm/m/°C)Thermal Conductivity (W/m.K)Specific Heat 0-100 °C (J/kg.K)Elec Resistivity (nΩ.m)
0-100 °C0-315 °C0-538 °CAt 100 °CAt 500 °C
316/L/H800019315.916.217.516.321.5500740


Grade Specification Comparison
Table 4. Grade specifications for 316 grade stainless steels.
GradeUNS NoOld BritishEuronormSwedish SSJapanese JIS
BSEnNoName
316S31600316S3158H, 58J1.4401X5CrNiMo17-12-22347SUS 316
316LS31603316S11-1.4404X2CrNiMo17-12-22348SUS 316L
316HS31609316S51-----



Note: These comparisons are approximate only. The list is intended as a comparison of functionally similar materials not as a schedule of contractual equivalents. If exact equivalents are needed original specifications must be consulted


Possible Alternative Grades

Table 5. Possible alternative grades to 316 stainless steel.

GradeWhy it might be chosen instead of 316?
316TiBetter resistance to temperatures of around 600-900 °C is needed.
316NHigher strength than standard 316.
317LHigher resistance to chlorides than 316L, but with similar resistance to stress corrosion cracking.
904LMuch higher resistance to chlorides at elevated temperatures, with good formability
2205Much higher resistance to chlorides at elevated temperatures, and higher strength than 316


Corrosion Resistance

Excellent in a range of atmospheric environments and many corrosive media - generally more resistant than 304. Subject to pitting and crevice corrosion in warm chloride environments, and to stress corrosion cracking above about 60 °C. Considered resistant to potable water with up to about 1000 mg/L chlorides at ambient temperatures, reducing to about 500 mg/L at 60 °C.
316 is usually regarded as the standard “marine grade stainless steel”, but it is not resistant to warm sea water. In many marine environments 316 does exhibit surface corrosion, usually visible as brown staining. This is particularly associated with crevices and rough surface finish.

Heat Resistance

Good oxidation resistance in intermittent service to 870 °C and in continuous service to 925 °C. Continuous use of 316 in the 425-860 °C range is not recommended if subsequent aqueous corrosion resistance is important. Grade 316L is more resistant to carbide precipitation and can be used in the above temperature range. Grade 316H has higher strength at elevated temperatures and is sometimes used for structural and pressure-containing applications at temperatures above about 500 °C.

Heat Treatment

Solution Treatment (Annealing) - Heat to 1010-1120 °C and cool rapidly. These grades cannot be hardened by thermal treatment.

Welding

Excellent weldability by all standard fusion methods, both with and without filler metals. AS 1554.6 pre-qualifies welding of 316 with Grade 316 and 316L with Grade 316L rods or electrodes (or their high silicon equivalents). Heavy welded sections in Grade 316 require post-weld annealing for maximum corrosion resistance. This is not required for 316L. Grade 316Ti may also be used as an alternative to 316 for heavy section welding.



Machining

A “Ugima” improved machinability version of grade 316 is available in round and hollow bar products. This machines significantly better than standard 316 or 316L, giving higher machining rates and lower tool wear in many operations.

Dual Certification

It is common for 316 and 316L to be stocked in "Dual Certified" form - mainly in plate and pipe. These items have chemical and mechanical properties complying with both 316 and 316L specifications. Such dual certified product does not meet 316H specification and may be unacceptable for high temperature applications.

Applications

Typical applications include:
  • Food preparation equipment particularly in chloride environments.
  • Laboratory benches & equipment.
  • Coastal architectural panelling, railings & trim.
  • Boat fittings.
  • Chemical containers, including for transport.
  • Heat Exchangers.
  • Woven or welded screens for mining, quarrying & water filtration.
  • Threaded fasteners.
  • Springs.
Source: Atlas Steels Australia
For more information on this source please visit Atlas Steels Australia



How to verify 316 Stainless Steel Pipe Suppliers


316 Stainless Steel Pipe Suppliers 










10 ) Excel Metal & Engg Industries

316 Stainless Steel Pipe Suppliers



For Promotion Of Your Company Write Your Requirements In The Comment Box And Our Business Manager Will Assist You.

Thanks & Best Regards

Samarpan Thorat
9029137339
(Marketing Manger - India)
316 Stainless Steel Pipe Suppliers

316 Stainless Steel Pipe Suppliers

316 Stainless Steel Pipe Suppliers

316 Stainless Steel Pipe Suppliers


316 Stainless Steel Pipe Suppliers

316 Stainless Steel Pipe Suppliers

 

 

 

 






Comments

Popular posts from this blog

304 Stainless Steel Fasteners

Brass Pipe Suppliers In Mumbai

Stainless Steel 904L sheet